
1

Fast Track Points:

One-time Ring Signature Peer-to-Peer Electronic Cash

System with Hybrid Program Algorithms

By: Satuhiro Aikenode

hybridftp@gmail.com

www.hybridftp.com

Abstract
A purely peer-to-peer version of electronic cash would allow online payments to be sent directly from one

party to another without going through a financial institution. Digital signatures provide part of the solution,

but the main benefits are lost if a trusted third party is still required to prevent double-spending. We propose a

solution to the double-spending problem using a peer-to-peer network. The network timestamps transactions

by hashing them into an ongoing chain of hash-based proof-of-work, forming a record that cannot be changed

without redoing the proof-of-work. The longest chain not only serves as proof of the sequence of events

witnessed, but proof that it came from the largest pool of CPU power. As long as a majority of CPU power is

controlled by nodes that are not cooperating to attack the network, they'll generate the longest chain and

outpace attackers. The network itself requires minimal structure. Messages are broadcast on a best effort basis,

and nodes can leave and rejoin the network at will, accepting the longest proof-of-work chain as proof of what

happened while they were gone.

Introduction
Commerce on the Internet has come to rely almost exclusively on financial institutions serving as trusted third

parties to process electronic payments. While the system works well enough for most transactions, it still

suffers from the inherent weaknesses of the trust based model. Completely non-reversible transactions are not

really possible, since financial institutions cannot avoid mediating disputes. The cost of mediation increases

transaction costs, limiting the minimum practical transaction size and cutting off the possibility for small

casual transactions, and there is a broader cost in the loss of ability to make non-reversible payments for

nonreversible services. With the possibility of reversal, the need for trust spreads. Merchants must be wary of

their customers, hassling them for more information than they would otherwise need. A certain percentage of

fraud is accepted as unavoidable. These costs and payment uncertainties can be avoided in person by using

physical currency, but no mechanism exists to make payments over a communications channel without a

trusted party. What is needed is an electronic payment system based on cryptographic proof instead of trust,

allowing any two willing parties to transact directly with each other without the need for a trusted third party.

Transactions that are computationally impractical to reverse would protect sellers from fraud, and routine

escrow mechanisms could easily be implemented to protect buyers. In this paper, we propose a solution to the

double-spending problem using a peer-to-peer distributed timestamp server to generate computational proof of

the chronological order of transactions. The system is secure as long as honest nodes collectively control more

CPU power than any cooperating group of attacker nodes.

mailto:hybridftp@gmail.com

2

"Bitcoin" has been a successful implementation of the concept of p2p electronic cash. Both professionals and

the general public have come to appreciate the convenient combination of public transactions and proof-of-

work as a trust model. Today, the user base of electronic cash is growing at a steady pace; customers are

attracted to low fees and the anonymity provided by electronic cash and merchants value its predicted and

decentralized emission. Bitcoin has effectively proved that electronic cash can be as simple as paper money

and as convenient as credit cards.

Unfortunately, Bitcoin suffers from several deficiencies. For example, the system's distributed nature is

inflexible, preventing the implementation of new features until almost all of the network users update their

clients. Some critical flaws that cannot be fixed rapidly deter Bitcoin's widespread propagation. In such

inflexible models, it is more efficient to roll-out a new project rather than perpetually fix the original project.

In this paper, we study and propose solutions to the main deficiencies of Bitcoin. We believe that a system

taking into account the solutions we propose will lead to a healthy competition among different electronic cash

systems. We also propose our own electronic cash, "Fast Track Points", a name emphasizing the next

breakthrough in electronic cash.

Bitcoin is the first widely used financial system for which all the necessary data to validate the system status

can be cryptographically verified by anyone. However, it accomplishes this feat by storing all transactions in

a public database called "the blockchain" and someone who genuinely wishes to check this state must

download the whole thing and basically replay each transaction, check each one as they go. Meanwhile, most

of these transactions have not affected the actual final state (they create outputs that are destroyed a transaction

later).

At the time of this writing, there were nearly 150 million transactions committed in the blockchain, which

must be replayed to produce a set of only 4 million unspent outputs.

It would be better if an auditor needed only to check data on the outputs themselves, but this is impossible

because they are valid if and only if the output is at the end of a chain of previous outputs, each signs the next.

In other words, the whole blockchain must be validated to confirm the final state.

Add to this that these transactions are cryptographically atomic, it is clear what outputs go into every

transaction and what emerges. The "transaction graph" resulting reveals a lot of information and is subjected

to analysis by many companies whose business model is to monitor and control the lower classes. This makes

it very non-private and even dangerous for people to use.

Some solutions to this have been proposed. Greg Maxwell discovered to encrypt the amounts, so that the

graph of the transaction is faceless but still allow validation that the sums are correct. Dr Maxwell also

produced CoinJoin, a system for Bitcoin users to combine interactively transactions, confusing the transaction

graph. Nicolas van Saberhagen has developed a system to blind the transaction entries, goes much further to

cloud the transaction graph (as well as not needed the user interaction). Later, Shen Noether combined the two

approaches to obtain "confidential transactions" of Maxwell AND the darkening of van Saberhagen.

These solutions are very good and would make Bitcoin very safe to use. But the problem of too much data is

made even worse. Confidential transactions require multi-kilobyte proofs on every output, and van Saberhagen

signatures require every output to be stored for ever, since it is not possible to tell when they are truly spent.

Dr. Maxwell's CoinJoin has the problem of needing interactivity. Dr. Yuan Horas Mouton fixed this by

making transactions freely mergeable, but he needed to use pairing-based cryptography, which is potentially

slower and more difficult to trust. He called this "one-way aggregate signatures" (OWAS).

OWAS had the good idea to combine the transactions in blocks. Imagine that we can combine across blocks

(perhaps with some glue data) so that when the outputs are created and destroyed, it is the same as if they

never existed. Then, to validate the entire chain, users only need to know when money is entered into the

3

system (new money in each block as in Bitcoin or Monero or peg-ins for sidechains) and final unspent outputs,

the rest can be removed and forgotten.

Then we can have Confidential Transactions to hide the amounts and OWAS to blur the transaction graph, and

use LESS space than Bitcoin to allow users to fully verify the blockchain. And also imagine that we must not

pairing-based cryptography or new hypotheses, just regular discrete logarithms signatures like Bitcoin. Here

is what I propose.

I call my creation Fast Track Points because it is used to prevent the blockchain from talking about all user's

information.

Irregular emission
Bitcoin has a predetermined emission rate: each solved block produces a fixed amount of coins.

Approximately every four years this reward is halved. The original intention was to create a limited smooth

emission with exponential decay, but in fact we have a piecewise linear emission function whose breakpoints

may cause problems to the Bitcoin infrastructure.

When the breakpoint occurs, miners start to receive only half of the value of their previous reward. The

absolute difference between 12.5 and 6.25 BTC (projected for the year 2020) may seem tolerable. However,

when examining the 50 to 25 BTC drop that took place on November 28 2012, felt inappropriate for a

significant number of members of the mining community. Figure 1 shows a dramatic decrease in the network's

hashrate in the end of November, exactly when the halving took place. This event could have been the perfect

moment for the malevolent individual described in the proof-of-work function section to carry-out a double

spending attack.

4

Hardcoded constants
Bitcoin has many hard-coded limits, where some are natural elements of the original design (e.g. block

frequency, maximum amount of money supply, number of confirmations) whereas other seem to be artificial

constraints. It is not so much the limits, as the inability of quickly changing them if necessary that causes the

main drawbacks. Unfortunately, it is hard to predict when the constants may need to be changed and replacing

them may lead to terrible consequences.

A good example of a hardcoded limit change leading to disastrous consequences is the block size limit set to

250kb1. This limit was sufficient to hold about 10000 standard transactions. In early 2013, this limit had

almost been reached and an agreement was reached to increase the limit. The change was implemented in

wallet version 0.8 and ended with a 24-blocks chain split and a successful double-spend attack. While the bug

was not in the Bitcoin protocol, but rather in the database engine it could have been easily caught by a simple

stress test if there was no artificially introduced block size limit.

Constants also act as a form of centralization point. Despite the peer-to-peer nature of Bitcoin, an

overwhelming majority of nodes use the official reference client developed by a small group of people. This

group makes the decision to implement changes to the protocol and most people accept these changes

irrespective of their "correctness". Some decisions caused heated discussions and even calls for boycott, which

indicates that the community and the developers may disagree on some important points. It therefore seems

logical to have a protocol with user-configurable and self-adjusting variables as a possible way to avoid these

problems.

Bulky scripts
The scripting system in Bitcoin is a heavy and complex feature. It potentially allows one to create

sophisticated transactions, but some of its features are disabled due to security concerns and some have never

even been used. The script (including both senders' and receivers' parts) for the most popular transaction in

Bitcoin looks like this:

<sig> <pubKey> OP DUP OP HASH160 <pubKeyHash> OP EQUALVERIFY OP CHECKSIG.

The script is 164 bytes long whereas its only purpose is to check if the receiver possess the secret key required

to verify his signature.

The Fast Track Points Technology
Now that we have covered the limitations of the Bitcoin technology, we will concentrate on presenting the

features of Fast Track Points.

Elliptic curve parameters
As our base signature algorithm we chose to use the fast scheme EdDSA, which is developed and

implemented by D.J. Bernstein et al. Like Bitcoin's ECDSA it is based on the elliptic curve discrete logarithm

problem, so our scheme could also be applied to Bitcoin in future. Common parameters are:

5

Terminology
Enhanced privacy requires a new terminology which should not be confused with Bitcoin entities.

The transaction structure remains similar to the structure in Bitcoin: every user can choose several independent

incoming payments (transactions outputs), sign them with the corresponding private keys and send them to

different destinations.

Contrary to Bitcoin's model, where a user possesses unique private and public key, in the proposed model a

sender generates a one-time public key based on the recipient's address and some random data. In this sense,

an incoming transaction for the same recipient is sent to a one-time public key (not directly to a unique

address) and only the recipient can recover the corresponding private part to redeem his funds (using his

unique private key). The recipient can spend the funds using a ring signature, keeping his ownership and

actual spending anonymous. The details of the protocol are explained in the next subsections.

6

Unlinkable payments
Classic Bitcoin addresses, once being published, become unambiguous identifier for incoming payments,

linking them together and tying to the recipient's pseudonyms. If someone wants to receive an "untied"

transaction, he should convey his address to the sender by a private channel. If he wants to receive different

transactions which cannot be proven to belong to the same owner he should generate all the different addresses

and never publish them in his own pseudonym.

We propose a solution allowing a user to publish a single address and receive unconditional unlinkable

payments. The destination of each Fast Track Points output (by default) is a public key, derived from

recipient's address and sender's random data. The main advantage against Bitcoin is that every destination key

is unique by default (unless the sender uses the same data for each of his transactions to the same recipient).

Hence, there is no such issue as "address reuse" by design and no observer can determine if any transactions

were sent to a specific address or link two addresses together.

First, the sender performs a Diffie-Hellman exchange to get a shared secret from his data and half of the

recipient's address. Then he computes a one-time destination key, using the shared secret and the second half

of the address. Two different ec-keys are required from the recipient for these two steps, so a standard Fast

Track Points address is nearly twice as large as a Bitcoin wallet address. The receiver also performs a Diffie-

Hellman exchange to recover the corresponding secret key.

A standard transaction sequence goes as follows:

7

8

As a result Bob gets incoming payments, associated with one-time public keys which are unlinkable for a

spectator. Some additional notes:

When Bob "recognizes" his transactions (see step 5) he practically uses

only half of his private information: (a,B). This pair, also known as the

tracking key, can be passed to a third party (Carol). Bob can delegate her

the processing of new transactions. Bob doesn't need to explicitly trust

Carol, because she can't recover the one-time secret key p without Bob's

full private key (a, b). This approach is useful when Bob lacks bandwidth

or computation power (smartphones, hardware wallets etc.).

In case Alice wants to prove she sent a transaction to Bob's address she

can either disclose r or use any kind of zero-knowledge protocol to prove

she knows r (for example by signing the transaction with r).

If Bob wants to have an audit compatible address where all incoming

transaction are linkable, he can either publish his tracking key or use a

truncated address. That address represent only one public ec-key B, and

the remaining part required by the protocol is derived from it as follows:

a = Hs(B) and A = Hs(B)G. In both cases every person is able to

"recognize" all of Bob's incoming transaction, but, of course, none can

spend the funds enclosed within them without the secret key b.

One-time ring signatures
A protocol based on one-time ring signatures allows users to achieve unconditional unlinkability.

Unfortunately, ordinary types of cryptographic signatures permit to trace transactions to their respective

senders and receivers. Our solution to this deficiency lies in using a different signature type than those

currently used in electronic cash systems.

We will first provide a general description of our algorithm with no explicit reference to electronic cash.

A one-time ring signature contains four algorithms: (GEN, SIG, VER, LNK):

9

The idea behind the protocol is fairly simple: a user produces a signature which can be checked by a set of

public keys rather than a unique public key. The identity of the signer is indistinguishable from the other users

whose public keys are in the set until the owner produces a second signature using the same keypair.

10

Standard Fast Track Points transaction
By combining both methods (unlinkable public keys and untraceable ring signature) Bob achieves new level

of privacy in comparison with the original Bitcoin scheme. It requires him to store only one private key (a, b)

and publish (A, B) to start receiving and sending anonymous transactions.

While validating each transaction Bob additionally performs only two elliptic curve multiplications and one

addition per output to check if a transaction belongs to him. For his every output Bob recovers a one-time

keypair (pi,Pi) and stores it in his wallet. Any inputs can be circumstantially proved to have the same owner

only if they appear in a single transaction. In fact this relationship is much harder to establish due to the one-

time ring signature.

With a ring signature Bob can effectively hide every input among somebody else's; all possible spenders will

be equiprobable, even the previous owner (Alice) has no more information than any observer.

When signing his transaction Bob specifies n foreign outputs with the same amount as his output, mixing all of

them without the participation of other users. Bob himself (as well as anybody else) does not know if any of

these payments have been spent: an output can be used in thousands of signatures as an ambiguity factor and

never as a target of hiding. The double spend check occurs in the LNK phase when checking against the used

key images set.

Bob can choose the ambiguity degree on his own: n = 1 means that the probability he has spent the output is

50% probability, n = 99 gives 1%. The size of the resulting signature increases linearly as O(n + 1), so the

improved anonymity costs to Bob extra transaction fees. He also can set n = 0 and make his ring signature to

consist of only one element, however this will instantly reveal him as a spender.

11

Egalitarian Proof-of-work
In this section we propose and ground the new proof-of-work algorithm. Our primary goal is to close the gap

between CPU (majority) and GPU/FPGA/ASIC (minority) miners. It is appropriate that some users can have a

certain advantage over others, but their investments should grow at least linearly with the power. More

generally, producing special-purpose devices has to be as less profitable as possible.

Transactions
We define an electronic coin as a chain of digital signatures. Each owner transfers the coin to the next by

digitally signing a hash of the previous transaction and the public key of the next owner and adding these to

the end of the coin. A payee can verify the signatures to verify the chain of ownership.

12

The problem of course is the payee can't verify that one of the owners did not double-spend the coin. A

common solution is to introduce a trusted central authority, or mint, that checks every transaction for double

spending. After each transaction, the coin must be returned to the mint to issue a new coin, and only coins

issued directly from the mint are trusted not to be double-spent. The problem with this solution is that the fate

of the entire money system depends on the company running the mint, with every transaction having to go

through them, just like a bank.

We need a way for the payee to know that the previous owners did not sign any earlier transactions. For our

purposes, the earliest transaction is the one that counts, so we don't care about later attempts to double-spend.

The only way to confirm the absence of a transaction is to be aware of all transactions. In the mint based

model, the mint was aware of all transactions and decided which arrived first. To accomplish this without a

trusted party, transactions must be publicly announced, and we need a system for participants to agree on a

single history of the order in which they were received. The payee needs proof that at the time of each

transaction, the majority of nodes agreed it was the first received.

Confidential Transactions and OWAS
The first thing we need to do is remove Bitcoin Script. This is sad, but it is too powerful so it is impossible to

merge transactions using general scripts. We will demonstrate that confidential transactions of Dr. Maxwell

are enough (after some small modification) to authorize spending of outputs and also allows to make

combined transactions without interaction. This is in fact identical to OWAS, and allows relaying nodes take

some transaction fee or the recipient to change the transaction fees. These additional things Bitcoin can not do,

we get for free.

We start by reminding the reader how confidential transactions work. First, the amounts are coded by the

following equation:

C = r*G + v*H

where C is a Pedersen commitment, G and H are fixed nothing-up-my-sleeve elliptic curve group generators, v

is the amount, and r is a secret random blinding key.

Attached to this output is a rangeproof which proves that v is in [0, 2^64], so that user cannot exploit the

blinding to produce overflow attacks, etc.

To validate a transaction, the verifier will add commitments for all outputs, plus f*H (f here is the transaction

fee which is given explicitly) and subtracts all input commitments. The result must be 0, which proves that no

amount was created or destroyed overall.

We note that to create such a transaction, the user must know the sum of all the values of r for commitments

entries. Therefore, the r-values (and their sums) act as secret keys. If we can make the r output values known

only to the recipient, then we have an authentication system! Unfortunately, if we keep the rule that commits

all add to 0, this is impossible, because the sender knows the sum of all _his_ r values, and therefore knows

the receipient's r values sum to the negative of that. So instead, we allow the transaction to sum to a nonzero

value k*G, and require a signature of an empty string with this as key, to prove its amount component is zero.

We let transactions have as many k*G values as they want, each with a signature, and sum them during

verification.

To create transactions sender and recipient do following ritual:

13

1. Sender and recipient agree on amount to be sent. Call this b.

2. Sender creates transaction with all inputs and change output(s),

andgives recipient the total blinding factor (r-value of change minus

r-values of inputs) along with this transaction. So the commitments sum

to r*G - b*H.

3. Recipient chooses random r-values for his outputs, and values that

sumto b minus fee, and adds these to transaction (including range

proof). Now the commitments sum to k*G - fee*H for some k that only

recipient knows.

4. Recipient attaches signature with k to the transaction, and theexplicit

fee. It has done.

Now, creating transactions in this manner supports OWAS already. To show this, suppose we have two

transactions that have a surplus k1*G and k2*G, and the attached signatures with these. Then you can combine

the lists of inputs and outputs of the two transactions, with both k1*G and k2*G to the mix, and voilÃ¡! is

again a valid transaction. From the combination, it is impossible to say which outputs or inputs are from which

original transaction.

Because of this, we change our block format from Bitcoin to this information:

1. Explicit amounts for new money (block subsidy or sidechain peg-ins)

with whatever else data this needs. For a sidechain peg-in maybe it

references a Bitcoin transaction that commits to a specific excess k*G

value? 2. Inputs of all transactions

3. Outputs of all transactions

4. Excess k*G values for all transactions

Each of these are grouped together because it do not matter what the transaction boundaries are originally. In

addition, Lists 2 3 and 4 should be required to be coded in alphabetical order, since it is quick to check and

prevents the block creator of leaking any information about the original transactions.

Note that the outputs are now identified by their hash, and not by their position in a transaction that could

easily change. Therefore, it should be banned to have two unspent outputs are equal at the same time, to avoid

confusion.

Traceability of Transactions
Privacy and anonymity are the most important aspects of electronic cash. Peer-to-peer payments seek to be

concealed from third party's view, a distinct difference when compared with traditional banking. In particular,

14

T. Okamoto and K. Ohta described six criteria of ideal electronic cash, which included "privacy: relationship

between the user and his purchases must be untraceable by anyone." From their description, we derived two

properties which a fully anonymous electronic cash model must satisfy in order to comply with the

requirements outlined by Okamoto and Ohta:

Untraceability: for each incoming transaction all possible senders are

equiprobable.

Unlinkability: for any two outgoing transactions it is impossible to prove

they were sent to the same person.

Unfortunately, Bitcoin does not satisfy the untraceability requirement. Since all the transactions that take place

between the network's participants are public, any transaction can be unambiguously traced to a unique origin

and final recipient. Even if two participants exchange funds in an indirect way, a properly engineered path-

finding method will reveal the origin and final recipient.

It is also suspected that Bitcoin does not satisfy the second property. Some researchers stated that a careful

blockchain analysis may reveal a connection between the users of the Bitcoin network and their transactions.

Although a number of methods are disputed, it is suspected that a lot of hidden personal information can be

extracted from the public database.

Bitcoin's failure to satisfy the two properties outlined above leads us to conclude that it is not an anonymous

but a pseudo-anonymous electronic cash system. Users were quick to develop solutions to circumvent this

shortcoming. Two direct solutions were "laundering services" and the development of distributed methods.

Both solutions are based on the idea of mixing several public transactions and sending them through some

intermediary address; which in turn suffers the drawback of requiring a trusted third party.

Recently, a more creative scheme was proposed by I. Miers et al.: "Zerocoin". Zerocoin utilizes a

cryptographic one-way accumulators and zero-knoweldge proofs which permit users to "convert" bitcoins to

zerocoins and spend them using anonymous proof of ownership instead of explicit public-key based digital

signatures. However, such knowledge proofs have a constant but inconvenient size - about 30kb (based on

today's Bitcoin limits), which makes the proposal impractical. Authors admit that the protocol is unlikely to

ever be accepted by the majority of Bitcoin users.

Untraceable Transactions
In this section we propose a scheme of fully anonymous transactions satisfying both untraceability and

unlinkability conditions. An important feature of our solution is its autonomy: the sender is not required to

cooperate with other users or a trusted third party to make his transactions; hence each participant produces a

cover traffic independently.

Merging Transactions Across Blocks
Now, we have used Dr. Maxwell's Confidential Transactions to create a noninteractive version of Dr.

Maxwell's CoinJoin, but we have not seen the last of marvelous Dr. Maxwell! We need another idea,

transaction cut-through, he described in. Again, we create a noninteractive version of this, and to show how it

is used with several blocks.

15

We can imagine now each block as one large transaction. To validate it, we add all the output commitments

together, then subtracts all input commitments, k*G values, and all explicit input amounts times H. We find

that we could combine transactions from two blocks, as we combined transactions to form a single block, and

the result is again a valid transaction. Except now, some output commitments have an input commitment

exactly equal to it, where the first block's output was spent in the second block. We could remove both

commitments and still have a valid transaction. In fact, there is not even need to check the rangeproof of the

deleted output.

The extension of this idea all the way from the genesis block to the latest block, we see that EVERY

nonexplicit input is deleted along with its referenced output. What remains are only the unspent outputs,

explicit input amounts and every k*G value. And this whole mess can be validated as if it were one

transaction: add all unspent commitments output, subtract the values k*G, validate explicit input amounts (if

there is anything to validate) then subtract them times H. If the sum is 0, the entire chain is good.

What is this mean? When a user starts up and downloads the chain he needs the following

data from each block:

1. Explicit amounts for new money (block subsidy or sidechain peg-

ins) with whatever else data this needs.

2. Unspent outputs of all transactions, along with a merkle proof

thateach output appeared in the original block. 3. Excess k*G values for

all transactions.

Bitcoin today there are about 423000 blocks, totaling 80GB or so of data on the hard drive to validate

everything. These data are about 150 million transactions and 5 million unspent nonconfidential outputs.

Estimate how much space the number of transactions take on a Fast Track Points chain. Each unspent output is

around 3Kb for rangeproof and Merkle proof. Each transaction also adds about 100 bytes: a k*G value and a

signature. The block headers and explicit amounts are negligible. Add this together and get 30Gb -- with a

confidential transaction and obscured transaction graph!

Timestamp Server
The solution we propose begins with a timestamp server. A timestamp server works by taking a hash of a

block of items to be timestamped and widely publishing the hash, such as in a newspaper or Usenet post. The

timestamp proves that the data must have existed at the time, obviously, in order to get into the hash. Each

timestamp includes the previous timestamp in its hash, forming a chain, with each additional timestamp

reinforcing the ones before it.

16

Proof-of-Work
To implement a distributed timestamp server on a peer-to-peer basis, we will need to use a proof- of-work

system similar to Adam Back's Hashcash, rather than newspaper or Usenet posts. The proof-of-work involves

scanning for a value that when hashed, such as with SHA-256, the hash begins with a number of zero bits. The

average work required is exponential in the number of zero bits required and can be verified by executing a

single hash.

For our timestamp network, we implement the proof-of-work by incrementing a nonce in the block until a

value is found that gives the block's hash the required zero bits. Once the CPU effort has been expended to

make it satisfy the proof-of-work, the block cannot be changed without redoing the work. As later blocks are

chained after it, the work to change the block would include redoing all the blocks after it.

The proof-of-work also solves the problem of determining representation in majority decision making. If the

majority were based on one-IP-address-one-vote, it could be subverted by anyone able to allocate many IPs.

Proof-of-work is essentially one-CPU-one-vote. The majority decision is represented by the longest chain,

which has the greatest proof-of-work effort invested in it. If a majority of CPU power is controlled by honest

nodes, the honest chain will grow the fastest and outpace any competing chains. To modify a past block, an

attacker would have to redo the proof-of-work of the block and all blocks after it and then catch up with and

surpass the work of the honest nodes. We will show later that the probability of a slower attacker catching up

diminishes exponentially as subsequent blocks are added.

To compensate for increasing hardware speed and varying interest in running nodes over time, the proof-of-

work difficulty is determined by a moving average targeting an average number of blocks per hour. If they're

generated too fast, the difficulty increases.

Bitcoin creator Satoshi Nakamoto described the majority decision making algorithm as "one-CPU-one-vote"

and used a CPU-bound pricing function (double SHA-256) for his proof-of-work scheme. Since users vote for

the single history of transactions order, the reasonableness and consistency of this process are critical

conditions for the whole system.

The security of this model suffers from two drawbacks. First, it requires 51% of the network's mining power to

be under the control of honest users. Secondly, the system's progress (bug fixes, security fixes, etc...) require

the overwhelming majority of users to support and agree to the changes (this occurs when the users update

their wallet software).Finally this same voting mechanism is also used for collective polls about

implementation of some features.

This permits us to conjecture the properties that must be satisfied by the proof-of-work pricing function. Such

function must not enable a network participant to have a significant advantage over another participant; it

requires a parity between common hardware and high cost of custom devices. From recent examples, we can

see that the SHA-256 function used in the Bitcoin architecture does not posses this property as mining

becomes more efficient on GPUs and ASIC devices when compared to high-end CPUs.

Therefore, Bitcoin creates favourable conditions for a large gap between the voting power of participants as it

violates the "one-CPU-one-vote" principle since GPU and ASIC owners posses a much larger voting power

17

when compared with CPU owners. It is a classical example of the Pareto principle where 20% of a system's

participants control more than 80% of the votes.

One could argue that such inequality is not relevant to the network's security since it is not the small number of

participants controlling the majority of the votes but the honesty of these participants that matters. However,

such argument is somewhat flawed since it is rather the possibility of cheap specialized hardware appearing

rather than the participants' honesty which poses a threat. To demonstrate this, let us take the following

example. Suppose a malevolent individual gains significant mining power by creating his own mining farm

through the cheap hardware described previously. Suppose that the global hashrate decreases significantly,

even for a moment, he can now use his mining power to fork the chain and double-spend. As we shall see later

in this article, it is not unlikely for the previously described event to take place.

Network
The steps to run the network are as follows:

1) New transactions are broadcast to all nodes.

2) Each node collects new transactions into a block.

3) Each node works on finding a difficult proof-of-work for its block.

4) When a node finds a proof-of-work, it broadcasts the block to all nodes.

5) Nodes accept the block only if all transactions in it are valid and not already spent.

6) Nodes express their acceptance of the block by working on creating the next block in the chain, using

thehash of the accepted block as the previous hash.

Nodes always consider the longest chain to be the correct one and will keep working on extending it. If two

nodes broadcast different versions of the next block simultaneously, some nodes may receive one or the other

first. In that case, they work on the first one they received, but save the other branch in case it becomes longer.

The tie will be broken when the next proof-of-work is found and one branch becomes longer; the nodes that

were working on the other branch will then switch to the longer one.

New transaction broadcasts do not necessarily need to reach all nodes. As long as they reach many nodes,

they will get into a block before long. Block broadcasts are also tolerant of dropped messages. If a node does

not receive a block, it will request it when it receives the next block and realizes it missed one.

Incentive
By convention, the first transaction in a block is a special transaction that starts a new coin owned by the

creator of the block. This adds an incentive for nodes to support the network, and provides a way to initially

distribute coins into circulation, since there is no central authority to issue them. The steady addition of a

constant of amount of new coins is analogous to gold miners expending resources to add gold to circulation. In

our case, it is CPU time and electricity that is expended.

resources to add gold to circulation. In our case, it is CPU time and electricity that is expended. The incentive

can also be funded with transaction fees. If the output value of a transaction is less than its input value, the

difference is a transaction fee that is added to the incentive value of the block containing the transaction.

Once a predetermined number of coins have entered circulation, the incentive can transition entirely to

transaction fees and be completely inflation free.

The incentive may help encourage nodes to stay honest. If a greedy attacker is able to assemble more

CPU power than all the honest nodes, he would have to choose between using it to defraud people by stealing

18

back his payments, or using it to generate new coins. He ought to find it more profitable to play by the rules,

such rules that favour him with more new coins than everyone else combined, than to undermine the system

and the validity of his own wealth.

Reclaiming Disk Space
Once the latest transaction in a coin is buried under enough blocks, the spent transactions before it can be

discarded to save disk space. To facilitate this without breaking the block's hash, transactions are hashed in a

Merkle Tree, with only the root included in the block's hash. Old blocks can then be compacted by stubbing

off branches of the tree. The interior hashes do not need to be stored.

A block header with no transactions would be about 80 bytes. If we suppose blocks are generated every 10

minutes, 80 bytes * 6 * 24 * 365 = 4.2MB per year. With computer systems typically selling with 2GB of

RAM as of 2008, and Moore's Law predicting current growth of 1.2GB per year, storage should not be a

problem even if the block headers must be kept in memory.

Simplified Payment Verification
It is possible to verify payments without running a full network node. A user only needs to keep a copy of the

block headers of the longest proof-of-work chain, which he can get by querying network nodes until he's

convinced he has the longest chain, and obtain the Merkle branch linking the transaction to the block it's

timestamped in. He can't check the transaction for himself, but by linking it to a place in the chain, he can see

that a network node has accepted it, and blocks added after it further confirm the network has accepted it.

19

As such, the verification is reliable as long as honest nodes control the network, but is more vulnerable if the

network is overpowered by an attacker. While network nodes can verify transactions for themselves, the

simplified method can be fooled by an attacker's fabricated transactions for as long as the attacker can

continue to overpower the network. One strategy to protect against this would be to accept alerts from network

nodes when they detect an invalid block, prompting the user's software to download the full block and alerted

transactions to confirm the inconsistency. Businesses that receive frequent payments will probably still want to

run their own nodes for more independent security and quicker verification.

Combining and Splitting Value
Although it would be possible to handle coins individually, it would be unwieldy to make a separate

transaction for every cent in a transfer. To allow value to be split and combined, transactions contain multiple

inputs and outputs. Normally there will be either a single input from a larger previous transaction or multiple

inputs combining smaller amounts, and at most two outputs: one for the payment, and one returning the

change, if any, back to the sender.

It should be noted that fan-out, where a transaction depends on several transactions, and those transactions

depend on many more, is not a problem here. There is never the need to extract a complete standalone copy of

a transaction's history.

Privacy
The traditional banking model achieves a level of privacy by limiting access to information to the parties

involved and the trusted third party. The necessity to announce all transactions publicly precludes this method,

but privacy can still be maintained by breaking the flow of information in another place: by keeping public

keys anonymous. The public can see that someone is sending an amount to someone else, but without

information linking the transaction to anyone. This is similar to the level of information released by stock

20

exchanges, where the time and size of individual trades, the "tape", is made public, but without telling who the

parties were.

As an additional firewall, a new key pair should be used for each transaction to keep them from being linked

to a common owner. Some linking is still unavoidable with multi-input transactions, which necessarily reveal

that their inputs were owned by the same owner. The risk is that if the owner of a key is revealed, linking

could reveal other transactions that belonged to the same owner.

The proposed algorithm
We propose a new memory-bound algorithm for the proof-of-work pricing function. It relies on random access

to a slow memory and emphasizes latency dependence. As opposed to scrypt every new block (64 bytes in

length) depends on all the previous blocks. As a result a hypothetical "memory-saver" should increase his

calculation speed exponentially.

Our algorithm requires about 2 Mb per instance for the following reasons:

1. It fits in the L3 cache (per core) of modern processors, which

shouldbecome mainstream in a few years;

2. A megabyte of internal memory is an almost unacceptable size for

amodern ASIC pipeline;

3. GPUs may run hundreds of concurrent instances, but they are limited

inother ways: GDDR5 memory is slower than the CPU L3 cache and remarkable

for its bandwidth, not random access speed.

4. Significant expansion of the scratchpad would require an increase

initerations, which in turn implies an overall time increase. "Heavy"

calls in a trust-less p2p network may lead to serious vulnerabilities,

because nodes are obliged to check every new block's proof-of-work. If a

node spends a considerable amount of time on each hash evaluation, it can

be easily DDoSed by a flood of fake objects with arbitrary work data

(nonce values).

21

Smooth emission
The upper bound for the overall amount of Fast Track Points digital coins is: MSupply = 2^64 - 1 atomic units.

This is a natural restriction based only on implementation limits, not on intuition such as "N coins ought to be

enough for anybody". To ensure the smoothness of the emission process we use the following formula for

block rewards:BaseReward = (MSupply - A) >> 18, where A is amount of previously generated coins.

Difficulty
Fast Track Points contains a targeting algorithm which changes the difficulty of every block. This decreases

the system's reaction time when the network hashrate is intensely growing or shrinking, preserving a constant

block rate. The original Bitcoin method calculates the relation of actual and target time-span between the last

2016 blocks and uses it as the multiplier for the current difficulty. Obviously this is unsuitable for rapid

recalculations (because of large inertia) and results in oscillations.

The general idea behind our algorithm is to sum all the work completed by the nodes and divide it by the time

they have spent. The measure of work is the corresponding difficulty values in each block. But due to

inaccurate and untrusted timestamps we cannot determine the exact time interval between blocks. A user can

shift his timestamp into the future and the next time intervals might be improbably small or even negative.

Presumably there will be few incidents of this kind, so we can just sort the timestamps and cut-off the outliers

(i.e. 20%). The range of the rest values is the time which was spent for 80% of the corresponding blocks.

Size limits
Users pay for storing the blockchain and shall be entitled to vote for its size. Every miner deals with the trade-

off between balancing the costs and profit from the fees and sets his own "soft-limit" for creating blocks. Also

the core rule for the maximum block size is necessary for preventing the blockchain from being flooded with

bogus transaction, however this value should not be hard-coded.

Let MN be the median value of the last N blocks sizes. Then the "hard-limit" for the size of accepting blocks is

2 * MN . It averts the blockchain from bloating but still allows the limit to slowly grow with time if necessary.

Transaction size does not need to be limited explicitly. It is bounded by the size of a block; and if somebody

wants to create a huge transaction with hundreds of inputs/outputs (or with the high ambiguity degree in ring

signatures), he can do so by paying sufficient fee.

Excess size penalty
A miner still has the ability to stuff a block full of his own zero-fee transactions up to its maximum size 2 *

Mb. Even though only the majority of miners can shift the median value, there is still a possibility to bloat the

blockchain and produce an additional load on the nodes. To discourage malevolent participants from creating

large blocks we introduce a penalty function:

This rule is applied only when BlkSize is greater than minimal free block size which should be close to

max(10kb, MN Â· 110%). Miners are permitted to create blocks of "usual size" and even exceed it with profit

when the overall fees surpass the penalty. But fees are unlikely to grow quadratically unlike the penalty value

so there will be an equilibrium.

22

Calculations
We consider the scenario of an attacker trying to generate an alternate chain faster than the honest chain. Even

if this is accomplished, it does not throw the system open to arbitrary changes, such as creating value out of

thin air or taking money that never belonged to the attacker. Nodes are not going to accept an invalid

transaction as payment, and honest nodes will never accept a block containing them. An attacker can only try

to change one of his own transactions to take back money he recently spent.

The race between the honest chain and an attacker chain can be characterized as a Binomial Random Walk.

The success event is the honest chain being extended by one block, increasing its lead by +1, and the failure

event is the attacker's chain being extended by one block, reducing the gap by -1.

The probability of an attacker catching up from a given deficit is analogous to a Gambler's Ruin problem.

Suppose a gambler with unlimited credit starts at a deficit and plays potentially an infinite number of trials to

try to reach breakeven. We can calculate the probability he ever reaches breakeven, or that an attacker ever

catches up with the honest chain, as follows:

Given our assumption that p > q, the probability drops exponentially as the number of blocks the attacker has

to catch up with increases. With the odds against him, if he doesn't make a lucky lunge forward early on, his

chances become vanishingly small as he falls further behind.

We now consider how long the recipient of a new transaction needs to wait before being sufficiently certain

the sender can't change the transaction. We assume the sender is an attacker who wants to make the recipient

believe he paid him for a while, then switch it to pay back to himself after some time has passed. The receiver

will be alerted when that happens, but the sender hopes it will be too late.

The receiver generates a new key pair and gives the public key to the sender shortly before signing. This

prevents the sender from preparing a chain of blocks ahead of time by working on it continuously until he is

lucky enough to get far enough ahead, then executing the transaction at that moment. Once the transaction is

sent, the dishonest sender starts working in secret on a parallel chain containing an alternate version of his

transaction.

The recipient waits until the transaction has been added to a block and z blocks have been linked after it. He

doesn't know the exact amount of progress the attacker has made, but assuming the honest blocks took the

average expected time per block, the attacker's potential progress will be a Poisson distribution with expected

value:

To get the probability the attacker could still catch up now, we multiply the Poisson density for each amount

of progress he could have made by the probability he could catch up from that point:

23

Rearranging to avoid summing the infinite tail of the distribution...

Converting to C code...

Running some results, we can see the probability drop off exponentially with z.

Solving for P less than 0.1%...

24

Related works
The original Bitcoin proof-of-work protocol uses the CPU-intensive pricing function SHA-256. It mainly

consists of basic logical operators and relies solely on the computational speed of processor, therefore is

perfectly suitable for multicore/conveyer implementation.

However, modern computers are not limited by the number of operations per second alone, but also by

memory size. While some processors can be substantially faster than others, memory sizes are less likely to

vary between machines.

Memory-bound price functions were first introduced by Abadi et al and were defined as "functions whose

computation time is dominated by the time spent accessing memory." The main idea is to construct an

algorithm allocating a large block of data ("scratchpad") within memory that can be accessed relatively slowly

(for example, RAM) and "accessing an unpredictable sequence of locations" within it. A block should be large

enough to make preserving the data more advantageous than recomputing it for each access. The algorithm

also should prevent internal parallelism, hence N simultaneous threads should require N times more memory

at once.

Dwork et al investigated and formalized this approach leading them to suggest another variant of the pricing

function: "Mbound". One more work belongs to F. Coelho, who proposed the most effective solution:

"Hokkaido".

To our knowledge the last work based on the idea of pseudo-random searches in a big array is the algorithm

known as "scrypt" by C. Percival. Unlike the previous functions it focuses on key derivation, and not proof-of-

work systems. Despite this fact scrypt can serve our purpose: it works well as a pricing function in the partial

hash conversion problem such as SHA-256 in Bitcoin.

By now scrypt has already been applied in Litecoin and some other Bitcoin forks. However, its

implementation is not really memory-bound: the ratio "memory access time / overall time" is not large enough

because each instance uses only 128 KB. This permits GPU miners to be roughly 10 times more effective and

continues to leave the possibility of creating relatively cheap but highly-efficient mining devices.

Moreover, the scrypt construction itself allows a linear trade-off between memory size and CPU speed due to

the fact that every block in the scratchpad is derived only from the previous. For example, you can store every

second block and recalculate the others in a lazy way, i.e. only when it becomes necessary.

Literature review
Our scheme relies on the cryptographic primitive called a group signature. First presented by D. Chaum and E.

van Heyst, it allows a user to sign his message on behalf of the group. After signing the message the user

provides (for verification purposes) not his own single public key, but the keys of all the users of his group. A

verifier is convinced that the real signer is a member of the group, but cannot exclusively identify the signer.

The original protocol required a trusted third party (called the Group Manager), and he was the only one who

could trace the signer. The next version called a ring signature, introduced by Rivest et al. in, was an

25

autonomous scheme without Group Manager and anonymity revocation. Various modifications of this scheme

appeared later: linkable ring signature allowed to determine if two signatures were produced by the same

group member, traceable ring signature limited excessive anonymity by providing possibility to trace the

signer of two messages with respect to the same metainformation (or "tag").

A similar cryptographic construction is also known as a ad-hoc group signature. It emphasizes the arbitrary

group formation, whereas group/ring signature schemes rather imply a fixed set of members.

For the most part, our solution is based on the work "Traceable ring signature" by E. Fujisaki and K. Suzuki.

In order to distinguish the original algorithm and our modification we will call the latter a one-time ring

signature, stressing the user's capability to produce only one valid signature under his private key. We

weakened the traceability property and kept the linkability only to provide one-timeness: the public key may

appear in many foreign verifying sets and the private key can be used for generating a unique anonymous

signature. In case of a double spend attempt these two signatures will be linked together, but revealing the

signer is not necessary for our purposes.

Questions and Intuition
Here are some questions that since these weeks, dreams asked me and I woke up sweating. But in fact it is

OK.

Q. If you delete the transaction outputs, user cannot verify the

rangeproof and maybe a negative amount is created.

A. This is OK. For the entire transaction to validate all negative amounts

must have been destroyed. User have SPV security only that no illegal

inflation happened in the past, but the user knows that _at this time_ no

inflation occurred.

Q. If you delete the inputs, double spending can happen.

A. In fact, this means: maybe someone claims that some unspent output was

spent in the old days. But this is impossible, otherwise the sum of the

combined transaction could not be zero.

An exception is that if the outputs are amount zero, it is possible to

make two that are negatives of each other, and the pair can be revived

without anything breaks. So to prevent consensus problems, outputs 0-

amount should be banned. Just add H at each output, now they all amount to

at least 1.

Future Research
Here are some questions I can not answer at the time of this writing.

26

1. What script support is possible? We would need to translate

scriptoperations into some sort of discrete logarithm information.

2. We require user to check all k*G values, when in fact all that

isneeded is that their sum is of the form k*G. Instead of using signatures

is there another proof of discrete logarithm that could be combined?

3. There is a denial-of-service option when a user downloads the

chain,the peer can give gigabytes of data and list the wrong unspent

outputs. The user will see that the result do not add up to 0, but cannot

tell where the problem is.

For now maybe the user should just download the blockchain from a Torrent

or something where the data is shared between many users and is reasonably

likely to be correct.

Conclusion
We have proposed a system for electronic transactions without relying on trust. We started with the usual

framework of coins made from digital signatures, which provides strong control of ownership, but is

incomplete without a way to prevent double-spending. To solve this, we proposed a peer-to-peer network

using proof-of-work to record a public history of transactions that quickly becomes computationally

impractical for an attacker to change if honest nodes control a majority of CPU power. The network is robust

in its unstructured simplicity. Nodes work all at once with little coordination. They do not need to be

identified, since messages are not routed to any particular place and only need to be delivered on a best effort

basis. Nodes can leave and rejoin the network at will, accepting the proof-of-work chain as proof of what

happened while they were gone. They vote with their CPU power, expressing their acceptance of valid blocks

by working on extending them and rejecting invalid blocks by refusing to work on them. Any needed rules

and incentives can be enforced with this consensus mechanism.

We have investigated the major flaws in Bitcoin and proposed some possible solutions. These ad- vantageous

features and our ongoing development make new electronic cash system Fast Track Points a serious rival to

Bitcoin, outclassing all its forks.

Nobel prize laureate Friedrich Hayek in his famous work proves that the existence of con- current independent

currencies has a huge positive effect. Each currency issuer (or developer in our case) is trying to attract users

by improving his product. Currency is like a commodity: it can have unique benefits and shortcomings and the

most convenient and trusted currency has the greatest demand. Suppose we had a currency excelling Bitcoin:

it means that Bitcoin would develop faster and become better. The biggest support as an open source project

would come from its own users, who are interested in it.

We do not consider Fast Track Points as a full replacement to Bitcoin. On the contrary, having two (or more)

strong and convenient currencies is better than having just one. Running two and more different projects in

parallel is the natural flow of electronic cash economics.

27

References
W. Dai, "b-money," http://www.weidai.com/bmoney.txt, 1998.

H. Massias, X.S. Avila, and J.-J. Quisquater, "Design of a secure timestamping service with minimal trust

requirements," In 20th Symposium on Information Theory in the Benelux, May 1999.

S. Haber, W.S. Stornetta, "How to time-stamp a digital document," In Journal of Cryptology, vol 3, no 2,

pages 99-111, 1991.

D. Bayer, S. Haber, W.S. Stornetta, "Improving the efficiency and reliability of digital time-stamping," In

Sequences II: Methods in Communication, Security and Computer Science, pages 329-334, 1993.

S. Haber, W.S. Stornetta, "Secure names for bit-strings," In Proceedings of the 4th ACM Conference on

Computer and Communications Security, pages 28-35, April 1997.

A. Back, "Hashcash - a denial of service counter-measure," http://www.hashcash.org/papers/hashcash.pdf,

2002.

R.C. Merkle, "Protocols for public key cryptosystems," In Proc. 1980 Symposium on Security and Privacy,

IEEE Computer Society, pages 122-133, April 1980.

W. Feller, "An introduction to probability theory and its applications," 1957.

http://bitcoin.org.

https://en.bitcoin.it/wiki/Category:Mixing Services.

http://blog.ezyang.com/2012/07/secure-multiparty-bitcoin-anonymization.

https://bitcointalk.org/index.php?topic=279249.0.

http://msrvideo.vo.msecnd.net/rmcvideos/192058/dl/192058.pdf.

https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki#Specification.

https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki#Backwards Compatibility.

https://en.bitcoin.it/wiki/Mining hardware comparison. https://github.com/bitcoin/bips/blob/master/bip-

0050.mediawiki. http://luke.dashjr.org/programs/bitcoin/files/charts/branches.html.

https://bitcointalk.org/index.php?topic=196259.0. https://en.bitcoin.it/wiki/Contracts.

https://en.bitcoin.it/wiki/Script. http://litecoin.org.

28

Martin Abadi, Michael Burrows, and Ted Wobber. Moderately hard, memory-bound functions. In NDSS,

2003.

Ben Adida, Susan Hohenberger, and Ronald L. Rivest. Ad-hoc-group signatures from hijacked keypairs. In in

DIMACS Workshop on Theft in E-Commerce, 2005.

Man Ho Au, Sherman S. M. Chow, Willy Susilo, and Patrick P. Tsang. Short linkable ring signatures

revisited. In EuroPKI, pages 101-115, 2006.

Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security

signatures. J. Cryptographic Engineering, 2(2):77-89, 2012.

David Chaum and Eug`ene van Heyst. Group signatures. In EUROCRYPT, pages 257-265, 1991.

Fabien Coelho. Exponential memory-bound functions for proof of work protocols. IACR Cryptology ePrint

Archive, 2005:356, 2005.

Ronald Cramer, Ivan Damg ÌŠard, and Berry Schoenmakers. Proofs of partial knowledge and simplified

design of witness hiding protocols. In CRYPTO, pages 174-187, 1994.

Cynthia Dwork, Andrew Goldberg, and Moni Naor. On memory-bound functions for fighting spam. In

CRYPTO, pages 426-444, 2003.

Eiichiro Fujisaki. Sub-linear size traceable ring signatures without random oracles. In CT- RSA, pages 393-

415, 2011.

Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring signature. In Public Key Cryptogra- phy, pages 181-

200, 2007.

Jezz Garzik. Peer review of "quantitative analysis of the full bitcoin transaction graph".

https://gist.github.com/3901921, 2012.

Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable spontaneous anonymous group signature for ad

hoc groups (extended abstract). In ACISP, pages 325-335, 2004.

Joseph K. Liu and Duncan S. Wong. Linkable ring signatures: Security models and new schemes. In ICCSA

(2), pages 614-623, 2005.

Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin: Anonymous distributed e-cash

from bitcoin. In IEEE Symposium on Security and Privacy, pages 397- 411, 2013.

Micha Ober, Stefan Katzenbeisser, and Kay Hamacher. Structure and anonymity of the bitcoin transaction

graph. Future internet, 5(2):237-250, 2013.

Tatsuaki Okamoto and Kazuo Ohta. Universal electronic cash. In CRYPTO, pages 324-337, 1991.

29

Marc Santamaria Ortega. The bitcoin transaction graph â€” anonymity. Masterâ€™s thesis, Universitat Oberta

de Catalunya, June 2013.

Colin Percival. Stronger key derivation via sequential memory-hard functions. Presented at BSDCanâ€™09,

May 2009.

Fergal Reid and Martin Harrigan. An analysis of anonymity in the bitcoin system. CoRR, abs/1107.4524,

2011.

Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In ASIACRYPT, pages 552-565,

2001.

Dorit Ron and Adi Shamir. Quantitative analysis of the full bitcoin transaction graph. IACR Cryptology ePrint

Archive, 2012:584, 2012.

Meni Rosenfeld. Analysis of hashrate-based double-spending. 2012.

Maciej Ulas. Rational points on certain hyperelliptic curves over finite fields. Bulletin of the Polish Academy

of Sciences. Mathematics, 55(2):97-104, 2007.

Qianhong Wu, Willy Susilo, Yi Mu, and Fangguo Zhang. Ad hoc group signatures. In IWSEC, pages 120-135,

2006.

